skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neves, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning-based object detection algorithms enable the simultaneous classification and localization of any number of objects in image data. Many of these algorithms are capable of operating in real-time on high resolution images, attributing to their widespread usage across many fields. We present an end-to-end object detection pipeline designed for rare event searches for the Migdal effect, at real-time speeds, using high-resolution image data from the scientific CMOS camera readout of the MIGDAL experiment. The Migdal effect in nuclear scattering, critical for sub-GeV dark matter searches, has yet to be experimentally confirmed, making its detection a primary goal of the MIGDAL experiment. The Migdal effect forms a composite rare event signal topology consisting of an electronic and nuclear recoil sharing the same vertex. Crucially, both recoil species are commonly observed in isolation in the MIGDAL experiment, enabling us to train YOLOv8, a state-of-the-art object detection algorithm, on real data. Topologies indicative of the Migdal effect can then be identified in science data via pairs of neighboring or overlapping electron and nuclear recoils. Applying selections to real data that retain 99.7% signal acceptance in simulations, we demonstrate our pipeline to reduce a sample of 20 million recorded images to fewer than 1000 frames, thereby transforming a rare search into a much more manageable search. More broadly, we discuss the applicability of using object detection to enable data-driven machine learning training for other rare event search applications such as neutrinoless double beta decay searches and experiments imaging exotic nuclear decays. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract Time‐lapse electrical resistivity tomography (ERT) data are increasingly used to inform the hydrologic dynamics of mountainous environments at the hillslope scale. Despite their popularity and recent advancements in hydrogeophysical inversion methods, few studies have shown how time‐lapse ERT data can be used to determine hydraulic parameters of subsurface water flow models. This study uses synthetic and field‐collected, hillslope‐scale, time‐lapse ERT data to determine subsurface hydraulic properties of a two‐layer, physics‐based, 2‐D vertical flow model with predefined layer and boundary locations. Uncoupled and coupled hydrogeophysical inversion methods are combined with a fine‐earth fraction optimization scheme to reduce the number of parameters needing calibration and interpret the influence of the hydraulic parameters on the hydrologic model predictions. Inversions of synthetic ERT data recover the prescribed fine‐earth fraction bulk density to within 0.1 g cm−3. Field‐collected ERT data from a mountain hillslope result in hydrologic model dynamics that are consistent with previous studies and measured water content data but struggle to capture measured groundwater levels. The uncoupled hydrogeophysical inversion method is more sensitive to changes in hydraulic parameter values of the lower hydrologic model layer than the coupled hydrogeophysical inversion method. Time series of minimum objective function value simulations indicate that periodically collected ERT data may recover hydraulic parameters to a similar level of uncertainty as daily ERT data. Using simple hydrologic model domains within hydrogeophysical inversions shows promise for providing reasonable hydrologic predictions while maintaining relatively simple calibration schemes and should be explored further in future studies. 
    more » « less
  3. Abstract The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60–80 t capable of probing the remaining weakly interacting massive particle-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in136Xe using a natural-abundance xenon target. XLZD can reach a 3σdiscovery potential half-life of 5.7 × 1027years (and a 90% CL exclusion of 1.3 × 1028years) with 10 years of data taking, corresponding to a Majorana mass range of 7.3–31.3 meV (4.8–20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  4. ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV / c beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380 ± 26 mbarns for the 6 GeV / c setting and 379 ± 35 mbarns for the 7 GeV / c setting. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations. 
    more » « less
  6. Abstract The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. 
    more » « less
  7. Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. 
    more » « less
  8. Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype. 
    more » « less